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Abstract

This paper discusses the design of a customizable com-
ponent that encapsulates a raw baseline communication ar-
chitecture and a set of lightweight protocols. These proto-
cols can act in specific points of the baseline architecture’s
algorithm in order tailor communication or provide new
services according to the requirements of specific classes
of applications. An implementation of the described com-
ponent is currently being used by the application-oriented
parallel programming environment SNOW, which provides
specially tailored run-time systems for parallel applications
running on dedicated clusters.

1. Introduction

Recent advances in network hardware technology have
triggered a new wave of research in the communication
software field [10, 12]. Modern high-speed networks inval-
idate some of the assumptions of well-established, widely
used protocols, making it necessary to redesign the archi-
tecture of next generation communication software. In order
to provide applications with communication performance
close to the limits imposed by the network hardware, mod-
ern run-time systems must be able to effectively exploit
features provided by the communication hardware infras-
tructure, such as DMA engines, programmable NICs and
wormhole routing. Different research projects have already
proved that the design decision related to low-level com-
munication software greatly impact high-level applications
performance, especially in cluster environments where per-
formance depends on efficient communication between the
computing nodes [18].

The concept that communication software must be tai-
lored according to application requirements is currently the
subject of active research [1, 15]. High-Performance Com-
puting is one of the fields that can take more advantage of

application-oriented communication software since parallel
applications vary drastically, imposing different communi-
cation patterns on the network and demanding custom sup-
port from the run-time system. It seems reasonable to as-
sume that having the chance to tailor low-level communi-
cation software according to applications’ needs can lead to
a significant improvement in the overall performance of I/O
intensive parallel applications and parallel programming en-
vironments, whose performance is greatly affected by the
effectiveness of the underlying communication infrastruc-
ture.

This paper discusses the design of a configurable com-
ponent that can be tailored in order to match the communi-
cation requirements of specific classes of applications. This
component encapsulates a baseline communication archi-
tecture and a set of lightweight protocols that can act in spe-
cific points of the baseline architecture’s algorithm in order
to tailor its communication mechanisms or provide new ser-
vices. The idea behind designing a set of lightweight proto-
cols instead of a single, monolithic one is that applications
can improve their communication performance by using the
most appropriate protocols for their needs.

EPOS, an application-oriented, component-based op-
erating system for dedicated applications, is the core of
the SNOW project [5], which aims at delivering a high-
performance, application-oriented parallel-programming
environment for dedicated clusters. The component de-
scribed in this paper is used by EPOS in order to customize
its communication system according to the require-
ments of the parallel applications running on top of SNOW.
The remainder of this paper is structured as follows: sec-
tion 2 presents an overview of the customizable component
just mentioned focusing on the design of the metapro-
grammed mechanisms used to perform protocols selec-
tion and configuration. Section 3 gives an overview of
EPOS communication system and explains how the de-
scribed component fits in EPOS framework. Section 4
presents conclusions along with the directions for fu-



ture work.

2. Low-level lightweight communication pro-
tocols

Modern communication systems usually feature one or
more lightweight protocols instead of the classic, much less
efficient layered communication architecture. Lightweight
protocols consist in a set of low-level communication mech-
anisms embedding a communication protocol and can be
implemented as part of the host runtime system, hardwired
in the network hardware or as a combination of host soft-
ware and network interface firmware. Lightweight proto-
cols can implement different communication services, such
as reliable delivery, flow-control and multicasting, closer to
the network hardware, which can be more efficient since
special features of the communication hardware infrastruc-
ture can be used to improve performance and some of the
tasks involved in providing these services can be offloaded
to the network interface card.

It is probably impossible to design a single communi-
cation protocol that is optimal for all applications since
different applications impose different traffic patterns on
the underlying network and demand specific communica-
tion services. Besides, several different low-level commu-
nication protocols arise from the many different ways net-
work hardware features can be used, and the fact that mod-
ern NICs can be programmed only expands the universe
of possible protocol implementations. Instead of develop-
ing a single, highly complex, all encompassing protocol,
it appears more feasible to construct a module that allows
fine-grain selection and configuration of previously imple-
mented lightweight protocols. This paradigm offers a num-
ber of potential advantages, including the ability to develop
and deploy new network protocols and services quickly and
allowing applications to experiment with different commu-
nication protocols, collecting metrics in order to identify the
best one for their needs. Moreover, to structure communica-
tion software in such a modular fashion enhances maintain-
ability and extensibility, and designing a set of low-level
communication protocols instead of a monolithic one pro-
motes flexibility since new protocols can be implemented
specifically for a given application in order to satisfy its par-
ticular communication requirements.

In order to improve reusability and ease protocols im-
plementation, we have chosen to design lightweight proto-
cols in a strategy pattern [7] fashion: protocols will rely on
a baseline communication architecture, a basic, optimized
implementation of a low-level message passing API. Each
active protocol will have the chance to act in specific point-
cuts of the baseline architecture’s communication algorithm
in order to provide the services it implements. One of the
constraints of this design decisions is the fact that a base-

line communication architecture and the protocols it accepts
become very tightly coupled. A good way to diminish that
penalty is to design a baseline architecture that is simple and
flexible enough not to hinder the design and implementation
of specific protocols. Besides, the highest bandwidth and
lowest latency possible are necessary since complex proto-
col implementations will definitely affect both of them.

A baseline communication architecture and the
lightweight protocols is accepts must be grouped in a com-
ponent with a defined interface, low-level enough so that
different arrangements of runtime systems can be lay-
ered on top of it in an efficient way but also complete
enough so that applications can use the component directly.
In our approach, the baseline architecture dictates the com-
ponent’s interface as well as the methods that must be
provided by the protocols it accepts. All lightweight pro-
tocols provide an uniform, inline interface that declares
only the methods required by the baseline architec-
ture.

Customization is an important requirement and it is ad-
dressed through a configuration repository that is accessi-
ble by all sub-components involved in communication. Cus-
tomization points include the number and size of communi-
cation buffers in host and NIC memory, maximum transfer
unit, low-level communication protocols to be used and so
on. Protocol implementations that allow dynamic changes
in the active protocols, MTU and other customization points
can be combined with some kind of profiling provided by
the run-time system to dynamically tailor communication
according to application needs. This mechanism can also
be extended to provide an active network architecture im-
plemented as a lightweight protocol that is able to encapsu-
late other protocols or protocol activation flags in a frame
that is then injected into the network. In the receiving side,
this same protocol would evaluate the frames received from
the network and use the encapsulated protocols or protocol
activation flags in order to dynamically change the commu-
nication behavior.

It is desirable that lightweight protocols can be combined
together at will, providing the complete set of communica-
tion services the combined protocols implement. The active
lightweight protocols and the baseline architecture that sup-
ports them are combined together at compile-time using the
metaprogrammed support described in next section.

2.1. Automated generation

Metaprogramming [3] is the key technology for develop-
ing adaptable systems and automating the assembly of com-
ponents. Template metaprogramming is a form of metapro-
gramming limited to compile time: the C++ template mech-
anism allows us to write code that is executed by the C++
compiler during compilation. The fact that C++ static code



can be used to manipulate dynamic code is the basic prin-
ciple of the component described in this section. In [17] the
authors present an implementation of their broader view of
aspects using metaprogramming techniques similar to the
ones described in this section and the Boost metaprogram-
ming library, an extensible compile-time framework of al-
gorithms, sequences and metafunction classes that can be
considered the equivalent of a large subset of the STL. In
fact, the interaction between the baseline communication
architecture and the lightweight protocols was inspired by
some of the ideas of aspect-oriented programming and that
is the reason the term point-cut, used to identify the control
points at which aspect code fragments are to be inserted in
aspect-oriented programs, was chosen to identify the points
of interaction between baseline architecture and lightweight
protocols.

At compile-time, the metaclass protocol generator se-
lects and combines the active protocols taking as input the
configuration knowledge and providing as output an ab-
stract data-type that groups all the active lightweight com-
munication protocols and the corresponding baseline com-
munication architecture in a single component. It first goes
through the flags in the configuration repository that trigger
the activation of specific protocols. The corresponding pro-
tocol classes are then queued in a static metaprogrammed
linked list in a predefined order and dummy protocols are
used to fill the spot of the protocols that were not selected.
A dummy protocol provides the interface associated with
the baseline architecture in use, but all of its methods are
empty blocks declared as inline in order to allow that the op-
timization process of the C++ compiler remove all the calls
for any of its methods in the binary component.

The linked-list generated is used to parametrize a com-
posite protocol, a metaclass that provides a common inter-
face for a set of protocols. For each method in the uniform
interface of the low-level protocols, the composite proto-
col uses a static metaprogrammed loop to run through the
elements in the linked-list generating code for the corre-
sponding method call of each one of the protocols on the
list, in the predefined order. Method calls for dummy proto-
cols, used to replace the protocols that were not selected, are
wiped-off in a later optimization stage of the compilation
process. The whole process of static selection and configu-
ration of low-level lightweight communication protocols is
summarized in Figure 1.

2.2. Protocols

In this section we will discuss the implementation of
three communication services required by several applica-
tions that rely on a low-level communication interface as
lightweight protocols: multicasting/broadcasting, reliability
and flow-control. One of the advantages in implementing
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Figure 1. Configuration and generation of
low-level lightweight protocols.

such services as low-level protocols is the fact that the closer
to the hardware these communication services are imple-
mented, taking advantage of modern network hardware fea-
tures, the more efficient the implementations are.

In order to achieve this, we must define a low-level base-
line communication architecture for an existing network
technology. Therefore, a deep understanding of the net-
work technology in question, from the network interface
card architecture to the routing mechanisms involved, be-
comes necessary. Myricom’s Myrinet is a switched, gigabit-
per-second system area network (SAN). The ANSI standard
Myrinet-on-VME Protocol Specification [19] defines pack-
ets of variable length that are wormhole-routed through a
network of highly reliable links and crossbar switches. The
Myrinet NIC is a programmable communication device,
equipped with an instruction-interpreting on-board RISC
processor, called LANai, a set of DMA engines and on-
board fast SRAM. Figure 2 shows the architecture of a node
in a Myrinet SAN. Each node in the SAN features a Myrinet
NIC connected to its I/O bus, a typical organization for
commodity hardware.

Myrinet requires that all incoming and outgoing pack-
ets go through NIC memory during communication, which
makes the relatively small amount of SRAM a precious re-
source. The on-board memory holds all code and data for
the LANai processor, the temporary buffers for the incom-
ing and outgoing packets and other data used during com-
munication. A host can access its network interface’s mem-
ory using programmed I/O (PIO) and both the host and the
NIC can use DMA to access data in each other’s memory.
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Figure 2. Architecture of a node in a Myrinet
SAN.

The NIC allows at most two memory accesses per clock cy-
cle, assigned based on the following priority order (highest
to lowest): I/O bus, net-recv DMA, net-send DMA, and the
LANai processor.

LANai gives protocol designers a great flexibility since
part of the communication can be offloaded from the host
CPU to the NIC processor. Besides, the NIC processor can
be programmed to provide a variety of special communica-
tions services closer to the hardware. LANai is much slower
than the host CPU, which yields a trade-off between perfor-
mance and complexity of the communication tasks executed
by it. Myrinet control programs (MCP) must be carefully
designed since adding just a few instructions to the criti-
cal path of the MCP affects communication performance.

Three DMA engines are provided by the Myrinet NIC.
They are responsible for injecting a frame into the net-
work (Net-Send), for consuming a frame off of the network
(Net-Recv) and for data transfers between host and NIC
(Host/NIC). These DMA engines are designed to work fully
in parallel in order to improve communication performance.
The number of DMA operations that can be executed con-
currently is limited by the restriction in the number of mem-
ory access per cycle imposed by the NIC. Myrinet networks
provide other features that can be used in many different
ways by communication protocols:

DMA queuing: Host/NIC data transfer requests can
be queued together and executed asynchronously by
the Host/NIC DMA engine. The engine uses up to four

chains of DMA control blocks stored in LANai mem-
ory to trigger DMA-mastering operations. Each one of
these chains can be activated by the host or the LANai.
When a chain is activated, the Host/NIC DMA engine ex-
ecutes a host/NIC data transfer for each block in the chain
until it finds a terminal block. The DMA engine pro-
cesses chains in priority order. For example, if the DMA
engine is executing the DMA operation described in a con-
trol block in the lowest priority chain when a new con-
trol block is queued in a higher priority chain, the
DMA engine will finish the DMA operation being exe-
cuted and move to that higher priority chain. A control
block can be configured to make the Host/NIC DMA en-
gine signal when it completes the DMA operation for that
block.

Hardware doorbell mechanism: The Myrinet NIC imple-
ments a mechanism that allows the host to write anywhere
in a specified region of the NIC I/O address space, the door-
bell region, and to have that data stored into a FIFO queue
in the LANai memory. The I/O address accessed by the host
is also written in the FIFO queue.

Backpressure flow control: Hop-by-hop flow con-
trol scheme employed by Myrinet that stalls the send-
ing NIC if the receiver is not available. One drawback of
backpressure is the possibility of creating deadlock situa-
tions. There is a time limit in the backpressure mechanism
that can be dynamically configured by software and is used
to prevent deadlocks: if the receiver does not drain the net-
work within the specified time limit the network resets the
receiving host NIC or truncates the packet.

Wormhole Routing: In wormhole routing networks, each
intermediate switch forwards a packet to the desired output
port as soon as it enters the switch, without waiting for the
entire packet to be assembled.

The high-performance Myrinet baseline architecture de-
scribed in [14] follows the general concepts behind success-
ful user-level communication systems for Myrinet. Figure
3 exhibits this architecture’s dynamic data flow and host
and NIC memory layout. Lightweight protocols will have
the chance to define actions to be executed by the base-
line architecture in the point-cuts defined for it, customiz-
ing the communication algorithm according to the services
they will provide.

The NIC memory holds the six buffers that are used dur-
ing communication. Send Ring and Receive Ring are cir-
cular buffers that hold the frames before they are accessed
by the network-DMA engines. Rx DMA Requests and Tx
DMA Requests are circular chains of DMA control blocks,
used by the Host-DMA engine for transferring frames be-
tween host and NIC memory. Rx FIFO Queue and Tx FIFO
Queue are circular FIFO queues used by the host proces-
sor and LANai to signal for each other the arrival of new
frames. The size of these buffers affects the communica-
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tion performance and reliability and they are statically con-
figured at compile time according to the information in the
configuration repository. The maximum transmission unit
(MTU) is also read from the configuration repository but it
can be changed dynamically by specific protocols in order
to maximize communication performance with techniques
such as the ones described in [6].

During communication, messages are split into frames of
fixed size that receive a header with information related with
the baseline architecture and the active protocols. These
frames are pushed into the communication pipeline by the
sender host processor that uses write PIO to fill up an en-
try in the Rx DMA Requests (for large frames) or to copy
(1) the frame directly to the Send Ring in NIC memory (for
small frames). It then triggers a doorbell, creating a new en-
try in the Tx FIFO Queue and signaling for the LANai pro-
cessor that a new frame must be sent. For large frames, the
transmission of frames between host and NIC memory (1)
is carried out asynchronously by the Host/NIC DMA engine
and the frame is sent (2) as soon as possible by LANai af-
ter the corresponding DMA finishes. Small frames are sent
as soon as the doorbell is rung, since at this point the frame
is already in NIC memory. A similar operation occurs in
the receiving side: when a frame arrives from the network,
LANai receives it and fills up an entry in the Rx DMA Re-
quests chain. The message is assembled asynchronously in
a staging buffer in host memory (3). The receiving side is
responsible for copying the whole message from the stag-
ing buffer before it is overwritten by other messages (4).

Much of the overhead observed in traditional protocol
implementations is due to memory copies during communi-
cation. In Myrinet at least three copies are required for each
message: from host memory to NIC memory in the send-
ing side, from NIC to NIC and from NIC memory to host
memory in the receiving side. In order to simplify the base-

line architecture’s design, a staging buffer was used to tem-
porarily hold the frames received from the network until the
receiving host is able to handle them. This adds some over-
head but specific protocol implementations can avoid this
extra copy acting in the point-cuts of the baseline architec-
ture in order to provide services such as rendezvous-style
communication, where the receiver posts a receive request
and provides a buffer before the message is sent, a credit
scheme, where the sender is requested to have credits for
the receiver before it sends a packet, or another technique,
achieving the optimal three copies.

The baseline architecture and many other Myrinet pro-
tocols assume that the Myrinet network is reliable and, for
that reason, no re-transmission or time-out mechanism is
needed. Implementations that assume unreliable network
hardware and recover from lost, corrupted, and dropped
frames by means of time-outs, retransmission, and hardware
supported CRC checks can be addressed by specific proto-
cols since different application domains may need different
trade off between reliability and performance. An easy way
to implement retransmission on top of the communication
algorithm previously outlined would be designing a proto-
col that acts in the point-cut defined right after the Send
operation making the baseline architecture wait for an ac-
knowledgment from the receiving host for a previously con-
figured amount of time. A retransmission would occur if the
sending host didn’t get the acknowledgment before timeout.

Backpressure, Myrinet’s hardware link-level flow con-
trol mechanism, is used by the baseline architecture in or-
der to prevent overflow of network interface buffers, stalling
the sender until the receiver is able to drain frames from the
network. More sophisticated flow-control mechanisms must
be provided by specific protocol implementations since spe-
cialized applications may only require limited flow-control
from the network, performing some kind of control on their
own. Multicast and broadcast are desirable since they are
fundamental components of collective communication op-
erations but the described architecture supports only point-
to-point messages. Lightweight protocols that provide these
features could be easily implemented on top of point-to-
point messages or using more efficient techniques [8].

Finally, the proposed baseline architecture provides no
protection since there is a large number of parallel applica-
tions running on dedicated environments. Protection could
be added using a VIA-like approach such as the one de-
scribed in [9]. Protocols could be used to implement this
mechanisms but that would require small changes in the de-
scribed baseline architecture’s design since the Myrinet’s
hardware doorbell would have to be used in order to imple-
ment the virtual interfaces.



3. EPOS Communication System

Configurable operating systems [11] [16] [2] are a re-
current theme in the operating system field. EPOS [4] is
a statically configurable, application-oriented, component-
based operating system for dedicated applications. EPOS is
the core of SNOW, a dedicated parallel programming sys-
tem for computational science applications that features a
thin-layer implementation of the MPI standard [13].

EPOS consists of a collection of reusable and adapt-
able software components and a set of tools that support
parallel application developers in plugging these compo-
nents into an adaptable framework in order to yield different
arrangements of run-time systems. EPOS components, or
scenario-independent system abstractions as they are called,
are grouped in families and kept independent of execution
scenario by deploying aspect separation and other factoriza-
tion techniques during the domain engineering process and
can be adapted to be reused in a variety of execution sce-
narios. Usability is largely improved by hiding the details
of a family of abstraction behind an hypothetical interface,
called the family’s inflated interface, and delegating the se-
lection of proper family members to automatic configura-
tion tools.

Components for low-level communication that follow
the design described in the previous section are currently
being used by EPOS in order to provide tailored commu-
nication support for SNOW and all the parallel applica-
tions running on top of it. EPOS communication system
is designed around three major families of abstractions:
Communicator, Channel, and Network. The Com-
municator family encompasses communication end-points
such as Link, Port, and Mailbox, thus acting as the main in-
terface between the communication system and application
programs. However, Communicators are not the only visi-
ble interface in the communication system since the com-
ponent nature of EPOS enables individual elements of the
communication system to be reused in isolation, even di-
rectly by applications. The second family of abstractions,
Channel, features communication protocols, so that data fed
into the communication system via a communicator gets de-
livered at the destination communicator accordingly. Exam-
ples of channels are Datagram and Stream. Network, the
third family in EPOS communication system, is responsi-
ble for abstracting distinct network technologies through
a common interface, thus keeping the communication sys-
tem itself architecture-independent and allowing for flexible
combinations of protocols and network architectures. Each
member in the network family is allowed to extend the fam-
ily’s interface to account for advanced features.

The EPOS abstraction for the Myrinet network tech-
nology was implemented following the design outlined in
the previous section. The high-performance baseline archi-

tecture outlined before is being used and a broad set of
lightweight protocols is currently being implemented so
SNOW can attend to the low-level communication needs of
specific classes of parallel applications. The component was
easily integrated into EPOS communication system since
the baseline architecture defined for it was designed aimed
at providing the interface required by the different Chan-
nel abstractions.

In EPOS, configuration knowledge is encapsulated in
configuration repositories implemented as traits templates.
There is one of these configuration repositories for each one
of EPOS components. A given configuration repository will
hold the values for the Configurable Features associated
with the corresponding component. Configurable Features
are being used by the metaclass Protocol Generator in order
to trigger the selection of the set of low-level lightweight
protocols that better satisfy parallel applications’ communi-
cations requirements.

4. Conclusion

An important step towards an efficient, application-
oriented communication system is to better understand the
relation between the design decisions in low-level com-
munication software and the performance of high-level
applications. Several research projects discuss the perfor-
mance of different implementations of low-level communi-
cation systems for a given network technology. The main
problem in comparing these different communication sys-
tems is that all of them have made very different deci-
sions in both the communication model and implementation
and provide different interfaces. Using the component pre-
viously described combined with the application-oriented
runtime system of SNOW will help us evaluate the im-
pact that customization of low-level communication soft-
ware has in the performance of parallel applications run-
ning on dedicated-clusters.

The architecture we propose should be flexible enough
to allow that a broad range of design decisions related
with low-level communication software for a given network
platform be supported as lightweight protocols. The pro-
posed lightweight communication protocols, along with the
application-oriented run-time system provided by SNOW,
will be used in order to evaluate how different low-level
communication schemes impact on parallel applications’
performance and the defined interface provided by the fi-
nal component will ease performance comparison among
different communication strategies.
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